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A METHOD FOR DETERMINING OPTIMUM PHASING

OF A MULTIPHASE PROPULSION SYSTEM FOR A SINGLE-STAGE VEHICLE

WITH LINEARIZED INERT WEIGHT

By James A. Martin

Langley Research Center

SUMMARY

Results are presented from a general analytical treatment of a single-stage vehicle

with multiple propulsion phases. This analytical treatment includes a closed-form solu-

tion for the cost and for the performance and a derivation of the optimal phasing of the

propulsion. Linearized variations in the inert weight elements are included, and the

function to be minimized can be selected. The derivation of optimal phasing results in a

set of nonlinear algebraic equations for optimal fuel volumes, for which a solution

method is outlined. Three specific example cases are analyzed: minimum gross lift-

off weight, minimum inert weight, and a minimized general function for a two-phase

vehicle. The results for the two-phase vehicle are applied to the dual-fuel rocket.

Comparisons with single-fuel vehicles indicate that dual-fuel vehicles can have lower

inert weight either by development of a dual-fuel engine or by parallel burning of sepa-

rate engines from lift-off.

INTRODUCTION

Recent and projected advances in the state of the art of various aerospace vehicle

technologies may make single-stage vehicles attractive for missions requiring acceler-

ation through large velocity increments. Some of the missions of interest are Earth-to-

orbit transportation, long-range Earth transportation, and orbit-to-orbit transportation.

The development of the staged-combustion rocket engine (ref. 1) is an example of an

advance in aerospace propulsion.

An advance in conceptual design may have been accomplished by the introduction

of the "mixed-mode" propulsion principle by Robert Salkeld (ref. 2). This propulsion

principle, simply stated, is the combination of one propulsion mode (a propulsion mode

is defined as a method of using the propulsion system) which results in low vehicle

structural mass with a propulsion mode which results in low vehicle fuel mass to achieve

a vehicle which has certain advantages over vehicles designed with either propulsion



mode alone. One application of the mixed-mode propulsion principle is the dual-fuel

rocket vehicle (refs. 2 and 3). In this case, the first fuel has a high density impulse and
the second fuel has a high specific impulse. Such a vehicle could be operated in several

phases (a phase being a portion of the trajectory during which all vacuum propulsion

characteristics remain constant): in the first phase, only the first fuel is burned; in the
intermediate phases, both fuels are used; and in the last phase, only the second fuel is

burned. (See ref. 3.)

In reference 2, Salkeld presented a preliminary analytical treatment of the mixed-

mode propulsion principle and numerical point-design data for a dual-fuel rocket vehicle.
The present report gives an expanded analytical treatment and selected numerical results

from the analysis. The analytical treatment of this report is expanded relative to that

of reference 2 in three ways: inert weight is calculated as a function of the volumes of

the fuels rather than being assumed fixed; the function to be minimized is not restricted

to total fuel volume, as in Salkeld's analysis; and the number of phases and propulsion

modes is unlimited. Some numerical results have been reported previously (ref. 4) for

dual-fuel rockets. The results discussed in the present report are matched to point-

design data and include both series-burn (one fuel burned after the other) and parallel-

burn (both fuels burned initially) concepts.

Results of similar previous work (refs. 5 to 7) have been published for multistage
vehicles, but they differ from results for the single-stage vehicle considered herein in
that the mass of early stages is jettisoned and does not have as great an effect on the
performance. Much work has been done on single-stage vehicles with multiple propul-
sion modes in which air-breathing engines are used during some phase of the flight.
(See, for example, refs. 8 and 9.) In general, such vehicles do not use the mixed-mode
propulsion principle; propulsion mode changes are dictated by flight regime rather than
by a trade-off of structural and fuel mass properties. Air-breathing propulsion systems
have high specific impulse and should be used for the final portion of the flight according
to the mixed-mode principle, but such systems are limited to a maximum operating
velocity.

SYMBOLS

A group of input terms relative to a phase

C cost

CE cost per unit engine weight for a phase

C F  cost per unit fuel weight for a phase
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Cin cost per unit injected weight

Cj,CI cost coefficient of ignition weight for phase j or 1

Clo cost per unit lift-off weight

CT cost per unit tank weight for a phase

CO  fixed cost

C0O fixed cost and other costs which do not vary with Vj

E engine weight coefficient, representing engine weight per unit ignition weight

for a phase

f fraction of injected weight which varies linearly with total injected weight

g acceleration due to gravity

H modified cost function

Is  vacuum specific impulse of a phase

T tank weight coefficient, representing tank weight per unit fuel weight for a

phase

V fuel volume for a phase

WF / fixed weightFX

WG weight of glider vehicle with no propulsion

Wign ignition weight for a phase

Win injected weight (vehicle inert weight plus payload), WG + WpI

Wlo lift-off weight

Wp payload weight

3



WpI propulsion inert weight, part of injected weight required for propulsion

Av total performance (ideal velocity increment in this analysis)

Av- performance from phase j

X Lagrangian multiplier

p fuel density for a phase

Subscripts:

J total number of phases

j phase 1, 2, 3, . . .

k phases before or after phase j

1 phase in which ignition weight is the variable of differentiation

STATEMENT OF THE PROBLEM

The problem considered is that of finding the phasing of a multiphase single-stage
vehicle which minimizes a cost function for a given performance. The models assumed
for the vehicle, cost function, and performance are now described.

Vehicle Model

The vehicle gross lift-off weight W10 is defined in terms of the weight elements
as follows:

J

Wlo= Win+ U PjVj (1)
j=1

where pj is the fuel density and Vj is the fuel volume for phase j. Each phase is
denoted by j, and J is the total number of phases. The injected weight Win is the
burnout weight of the final phase and is determined by

J

Win= WP + WFX + (EjWign,j + TjpjV) + fWin (2)

j=1
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The first two terms are the payload weight and the fixed weight, which do not vary. The

engine weight of each phase EjWign,j is assumed to be a linear function of the ignition

weight of the phase Wign,j , and the nonnegative coefficient Ej includes the effects of

desired vehicle thrust-to-weight ratio at ignition, the engine thrust-to-weight ratio, and

the thrust structure. Similarly, the tank weight of each phase TjpjVj is assumed to

be a linear function of the fuel weight of the phase, and the nonnegative coefficient Tj

includes the effects of tankage, body structure, and propellant lines. The last term

fWin (where 0 s f < 1) is recovery weight and represents aerodynamic surfaces,

maneuver and control propellants, and other weight elements which vary with injected

weight itself. The ignition weight of each phase, which includes the injected weight and

the fuel of the remaining phases indicated by the subscript k, is expressed as

J

Wign,j = Win + PkVk (3)

k=j

Note that Wign,1 = Wlo

Cost Model

The cost function can be written as

J

C = (CE,jEjWign,j + CT,jTjjVj + CF,jPjV) + CloW 0 + CinfWin + CO (4)

j=1

The first group of terms represent the cost of engines, tanks, and fuel for each of the

phases. The remaining terms represent costs proportional to W 10 , the recovery weight,
and a constant. This cost function is sufficiently versatile to allow the minimization of
Wlo , inert weight, fuel costs, development costs, or any other linear function by choosing

the coefficients appropriately. Although the W10 term could be divided among the

other terms, having W10 as a separate cost item is convenient for costs proportional to

Wlo.

Performance Model

The performance is measured by the total ideal velocity increment as follows:

Av= vj= gIs j In Wignj (5)

j=1 j=1 Wign,j - jVj

For a single-stage vehicle, the burnout weight of a phase is the ignition weight of the next

phase.

5



Since the form of the performance equation is the same as that of the Breguet

range equation, the analysis is also applicable to the multiphase cruise problem if gIs, j

is replaced by the Breguet factor. The Breguet factor may vary, but an average value

can be used over short phases. Although this paper does not emphasize the cruise

problem, the results indicate that multiple fuels can be used to advantage for cruise

vehicles.

DERIVATION OF EQUATIONS

Expressions for Cost, Injected Weight, and Performance in Closed Form

The cost, the injected weight, and the performance are expressed in the following

derivation in terms of a common set of independent variables in closed form. This

derivation is useful in understanding the results and simplifies the optimization in sub-

sequent sections.

The injected weight can be considered to consist of two terms, as follows:

Win = WG + WPI (6)

This relation comes from solving equation (2) for Win and is illustrated in figure 1.

The glider weight WG represents the payload, fixed weight, and corresponding recov-

ery weight and is given by

WP +WFX
WG= +Fx (7)

The glider would be the entire vehicle if no propulsion were required, and the glider

weight does not vary for the purposes of this analysis. The propulsion inert weight

Wpi includes the engines, tanks, and corresponding recovery weight and is given by

J

PI (1 f Wign,j + lTjjV) (8)

j=l1

The effect of the recovery weight is now in the form of increases in the other inert

weight elements.

The natural independent variables from a physical standpoint are the fuel volumes

V, j = 1, 2, . . ., J. Mathematically, however, the ignition weights of each phase

Wign,j are more convenient. Equation (3) gives Wign,j in terms of Vj, and Vj can

be found in terms of Wign,j from

Wign,j+ 1 = Wign,j - PjVj (9)
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to be

= Wign,j - Wign,j+l (j = 1, 2, ., J - 1) (10)

and

- Wign,J - Win (11)

Eliminating Vj in equation (8) by use of equations (10) and (11) gives
J J J-1

Ej Tj j , T J- Tj TjWpI= lf Wign,j + Wign,j - f Wign,j+ - f Win (12)

j=1 j=1 j=1

If each index is reduced by 1 and the limits are increased by 1, the third summation can

be rewritten in terms of Wign,j to give a term

Tj-1

- f Wign,j
j=2

This summation term may be combined with the first two summations of equation (12),
except for the j = 1 terms, and then equation (6) can be rewritten

E l + T 1  Ej + Tj - Tj- Tj
Win =WG+ I -f Wl +  Wign,j - -f Win (13)

Wf 1I I 1-f
j=2

Solving for Win gives

J

1in + A + lo + AjWign,j (14)
1 + j=2

1-f

where

A E 1 +T 1  (15)
1 - f +Tj

and

A Ej + T - T (j = 2, 3, . .. , J) (16)
1 l -f+Tj
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Similar operations on the cost function (eq. (4)) lead to

J

C = CO + (Clo + CE,1E1 + CT,T1l + CF,1)W10 + I (CE,jEj + CT,jTj - CT,j- 1
j=2

+ CF,j -1)Wign,j + (Cinf - CT,JTJ - CF,J)Win (17)

Substituting equation (14) into equation (17) and collecting all coefficients of the inde-

pendent variable gives

J

C = C O' + C1Wlo + CjWign,j (18)

j=2

where

CO= CO+ (Cinf- CT,jT - CF,J) WG (19)

1+T
1-f

C1 Clo + CE,1E1 + CT, 1 T 1 + CF,1 + (Cinf - CT,JTJ - CF,J)A1 (20)

and

Cj = CE,jEj + CT,jTj - CT,j-1Tj + CF,j - CF,j-1 + (Cinf

-CT,JTJ - CF,J)Aj (j = 2, 3, . .. , J) (21)

The expression for performance (eq. (5)) can be rewritten

J J

= gs, j In Wign,j - gI,j n (Wign,j - jV) (22)
j=1 j=1

Eliminating Vj gives

J J-1

AV = gIs, In Wlo + gIs,j in Wign,j - gIs,j In Wign,j+1 - gIs,J In Win (23)

j=2 j=1

Rewriting the second summation term as a function of Wign,j and combining the two
summation terms gives

J

Av = g1s, 1 In W10 + gs, IsjIs,j-) In Wign,j - gIs,J In Win (24)

j=2
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Substituting for Win from equation (14) gives Av as a function of Wign,j; however,

equation (24) is a more convenient form for the optimization.

General Optimum Phasing

The cost may be minimized subject to the constraint of fixed Av by writing

J
H = C + gIs n W1lo + g(Is,j - Is,j -) In Wign,j - gIs, J In Win - Av (25)

j=2

with the understanding that Win is defined by equation (14). The optimum is then

found by taking the derivative of H with respect to each independent variable and set-

ting each derivative equal to zero. The J equations are, with I denoting the vari-

able of differentiation,

aH 0 = C + >s,1 Win A (26)
aWlo L Wlo WinJ 1

H8Winl 0 = C + X (Isl - Is'11-) Wign, - g I s 'J  (1 = 2, 3,. . .,J) (27)
aWign,/ Wign,1 Win

Solving equation (26) for X and substituting the resulting expression into equa-

tion (27) gives, upon canceling g and returning to the subscript j,

C1 (sj - Isj-- IsjA
0 = C jA Ij)JA \ Win = 2, 3, . ., J) (28)

\Wlo Win

These J - 1 equations, with equation (14) and either equation (24) or equation (5), deter-

mine the J + 1 unknowns WIo, Win , and Wign,j for j = 2, 3,. . ., J. The equa-

tions are nonlinear and no general explicit solution is available, although explicit solu-

tions for specific cases are shown in subsequent sections. Rewriting equation (28)

reveals that Wign,j/Win is determined explicitly for j = 2, 3, . .. , J by the param-

eter WIo/Win:

Wign,j_ Isj -sj-1(j = 2, 3, . .. , J) (29)
Win s1 Win Is,JA) + IjA

(I Wl °  C1 Is'JAj

If Win/Wlo is assumed, Wignj/Win can be calculated from equation (29). The Av

corresponding to the assumed Win/Wlo can then be calculated from equation (5), since
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Wign,j w1dWinWign,j - jV Wign,2/Win 
(j = 1) (30a)

Wign,j _ Wign,j/Win

Wign,j - Pj Wign,j+/ Win (j = 2,3, . .. , J-1). (30b)
Wignj - jVj Wign,j+l/Win

Wign,j _ ign,J

Wign, j - PjVj Win (j = J) (30c)

A one-dimensional search is required to find the Win/Wlo which produces the desired
Av. Once the correct Win/Wlo and the corresponding Winj/Win are found, equa-
tion (14) can be used to determine the actual value of Win (and therefore Wign,j and
Wlo) for the given glider weight. The resulting minimum cost can then be calculated
from equation (18), and Vj can be calculated from equations (10) and (11) for
j= 1,2, . . ., J.

An alternate solution method is graphical, and this graphical method is used in the
section "Application to Dual-Fuel Rocket Vehicle," The graphical method requires the
following steps:

(1) Assume a value of Win/W 1o.

(2) Calculate Wign,j/Wlo from equation (29).

(3) Calculate Av from equation (5).

(4) Calculate Win from equation (14).

(5) Calculate the cost from equation (18) or calculate other desired quantities.

(6) Plot the quantities of interest as a function of Av.

(7) Increment Win/Wlo and repeat.

When the cost or other quantities have been plotted as a function of Av, the value at the
required Av can be read. Also, this method provides an insight into the variations of
the solution with variations in the Av requirement.

Minimum Lift-Off Weight

For minimum Wlo, choose

Clo = 1 (31)
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and

CE,j = CT,j = CF,j = Cin = CO = 0 (32)

which results in the cost function (eq. (4)) becoming

C = Wlo (33)

Then, from equations (20) aid (21), C1 0 0 and

Cj = 0 (j = 2, 3, . ., J) (34)

In this case equation (27) can be solved explicitly to give

Wign,- _ Is1 - Is1-1 (1 = 2, 3, . .. , J) (35)
Win Is,JAl

Then Wlo/Wign,2 can be found from the Av constraint (eq. (5)). The interesting
conclusion shown by this solution is that the ideal velocity performance increments
Avj of all but the first'phase are invariant with total ideal velocity. Only the first-

phase ideal velocity changes to meet the Av constraint.

Minimum Inert Weight

Since the payload weight is fixed, minimum inert weight corresponds to minimum
injected weight Win. The cost function represents injected weight if

Cin= (36)

and

CE,j = CT,j = CF,j = Clo = CO = 0 (37)

which results in the cost function

C = Win (38)

From equations (20) and (21), this cost function gives

C 1 = Al (39)

and

Cj =Aj (j = 2, 3,. .. , J) (40)

In this case the constant terms in the denominator of equation (29) cancel, and Win can

then be canceled to give
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Wign, _ Is - Is,-1 (1 = 2, 3, . . ., J) (41)

lo is1 AAl

Then Win/Wign,J can be found from the Av constraint. The interesting conclusion
shown by this solution is that the ideal velocity performance increments Avj of all but
the last phase are invariant with total ideal velocity. Only the last-phase ideal velocity
changes to meet the Av constraint.

Two-Phase Vehicle

Most examinations of multiphase vehicles would start with a two-phase vehicle.
In this case the relationship (29), which represents J - 1 equations, results in the
single equation

Wign, 2 Is,2 - Is, (42)
Win Win Wign,2 C 2

Ss,2A + 1 2A2(IS,l Wign,2 Wl 1 + Is2A

Also, equation (5) becomes

Wlo Wign,2Av = gIs, 1 n +W + gIs, Win (43)Wign,2 in

These two equations determine the two unknowns Wlo/Wign,2 and Wign,2/Win.
An iterative process in which one of these ratios is assumed or a graphical method can
be used to solve for the two weight ratios. The procedure is the same as outlined for
the multiphase case. When values are found for these two weight ratios, the actual
weights can be found from equation (14) which becomes

in WG + AWlo + A2Wign,2 (44)
+ T21+

1-f

Solving for Win in terms of these two weight ratios yields

Win = WG

I T2 f )(1 - A1 W1n W, 2 _ Wign,2) (45)
1 Wign,2 Win Win (45)

Thus, for a fixed value of WG, Win is determined, which in turn determines Wlo
and Wign,2. The cost can be calculated when the actual weights are known from equa-
tion (18), which in this case becomes
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C = CO + CIWlo + C2Wign,2 (46)

The groups of input terms for the two-phase case, from equations (15), (16), (19), (20),

and (21), become

A E 1 + T 1  (47)
11 - f + T2

A= E 2 + T2 - T 1  (48)
A2 1 - f + T 2

CO'= CO + (Cinf - CT,2T2 - CF,2) WG 2 (49)

1+
1-f

C1= Cl o + CE,1E1 + CT, 1 T 1 + CF,1 + (Cinf - CT,2T2- CF,2)A1 (50)

and

C2 = CE,2E2 + CT,2T2 - CT, 1 T 2 + CF,2 - CF,1 + (Cinf - CT, 2 T 2 - CF,2)A2 (51)

Results of Derivation

An analysis of a single-stage vehicle with multiphase propulsion has been per-

formed with a general cost function. Linearized variations of the injected weight with

the fuel loading of each phase were assumed. As a consequence of the linearization, a

closed-form solution was found for the ideal velocity performance and the cost function

as a function of any given set of values for either the fuel loading of each phase or the

ignition weight of each phase.

The cost function was then minimized subject to a constraint on the ideal velocity.

The result was a set of nonlinear equations which have not been solved explicitly, but an

implicit method of solving the equations has been found; the implicit method requires

either a one-dimensional iteration or a graphical method.

Explicit minimum-cost solutions were found for the specific cost functions of gross

weight and inert weight. For these cost functions, the ideal velocity increment of all but

one phase is invariant with the total ideal velocity requirement. For minimum gross

weight, only the first-phase ideal velocity increment changes to meet the total ideal

velocity requirement. For minimum inert weight, only the last-phase ideal velocity

increment changes to meet the total ideal velocity requirement.

The results of the general optimum-phasing analysis were also written specifically

for the two-phase vehicle. For the two-phase vehicle, the total ideal velocity require-

13



ment and one equation governing the condition for optimality must be solved for two

unknowns which are essentially the ideal velocity increments of both phases.

APPLICATION TO DUAL-FUEL ROCKET VEHICLE

The results of the optimum-phasing analysis for a two-phase vehicle with a gen-

eral cost function have been programed for a Wang 720C programable calculator and

702 plotting output writer. The programs have been used to calculate and to plot weight

and fuel-cost parameters for vehicles with single-fuel and dual-fuel rocket propulsion.

The fuels which were considered are hydrogen and RJ-5, a cyclical synthetic

hydrocarbon similar to kerosene; both fuels are burned with liquid oxygen. The coeffi-

cients which were used are summarized in table I. The values of the coefficients were

chosen to match the results of unpublished point-design data for single-fuel and dual-

fuel vehicles and to minimize inert weight or fuel cost.

Minimum Inert Weight

Figure 2 shows a comparison of a dual-fuel rocket vehicle with similar single-fuel

rocket vehicles using two fuels separately. (The design Av calculations in the data

figures were made in U.S. Customary Units.)

The glider weight is representative of the payload, and WG/Win is greatest for

minimum inert weight. This ratio is plotted as a function of the ideal velocity incre-

ment for which the vehicle is to be designed. The vehicle that uses only RJ-5 fuel has

the highest (best) value of WG/Win at low design ideal velocity increments, but the

value drops rapidly as design Av increases. The hydrogen-fueled vehicle has a bet-
ter value of WG/Win than the RJ-5 vehicle at high design velocities. The dual-fuel

vehicle essentially combines the best of both fuels by using RJ-5 at first and then

switching to hydrogen at the design Av indicated as the beginning of dual fuel. This
method of using the fuels could result in a curve which has the shape of the hydrogen
curve and an initial point on the RJ-5 curve, and such a curve would represent the poten-
tial of a dual-fuel vehicle. The dual-fuel vehicle does not achieve its full potential
because it must carry not only the RJ-5 burning engines to use at lift-off but also some
provision to burn the hydrogen later in the trajectory. The dual-fuel vehicle in figure 2
utilizes a dual-fuel engine which allows hydrogen to be burned in some of the RJ-5
engines (ref. 3). The hardware required for the hydrogen-burning capability is a pen-
alty that is shown as the difference between the initial point of the dual-fuel curve and
the RJ-5 curve at that design velocity. The dual-fuel vehicle has a better value of

WG/Win at moderate and high design velocities than either single-fuel vehicle.
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Figure 3 shows the weight breakdown into components of the dual-fuel vehicle as

a function of Av. As noted in the section "Minimum Inert Weight," the first-phase

ratio of fuel weight to lift-off weight (Wlox-RJ-5/Wlo) is not a function of design Av.

This fact can be understood by referring to figure 2 and noting that the slope of the

hydrogen curve was always better (i.e., less negative) than the slope of the RJ-5 curve

at design velocities greater than that denoted by the point as the beginning of dual fuel.

Any velocity above the denoted point should, therefore, be gained with hydrogen. Fig-

ure 3 also shows that no dual-fuel optimum solution exists below the denoted point; the

vehicle using RJ-5 is better than any dual-fuel vehicle in that regime.

The data shown so far have been generated by assuming the use of a dual-fuel

engine which burns both fuels in the same engine sequentially. Development of such a

dual-fuel engine could lead to difficulties and development costs. Therefore, dual-fuel

vehicles which do not have dual-fuel engines should be considered. Without dual-fuel

engines, complete separate engines must be carried to burn the second fuel. If the

engines are burned in series, the penalty for the second set of engines is severe. Fig-

ure 4 presents results for separate engines and series burn compared with the results

for the dual-fuel engine. The region of no dual-fuel optimal solution increases if sepa-

rate engines are used, but the penalty for the second set of engines is still so great that

the single-fuel hydrogen vehicle provides a better value of WG/Win. Using separate

engines in parallel is discussed in a subsequent section.

Minimum Fuel Cost

Figure 5 shows the weight breakdown into components of the dual-fuel vehicle as

a function of Av for minimum fuel cost. The fuel and oxygen cost per unit weight for

the second phase was assumed to be 1.7 times that for the first phase, which is repre-

sentative if the first fuel is a hydrocarbon such as kerosene. If the first fuel is a syn-

thetic such as RJ-5, the cost would be much greater. Reference 4 includes comparisons

of fuels with widely varying costs. The only difference between figure 5 and figure 3 is

that the cost function was changed from inert weight to fuel cost. The result of this

change was that the first-phase ratio of fuel weight to lift-off weight (Wlox-RJ-5/Wlo)

was greater in figure 5 at low design Av. At high design Av, the phase split approaches

and finally equals the minimum-inert-weight split.

PARALLEL BURN

A distinctly different mode of operation for a dual-fuel vehicle, parallel burn, was

also investigated. For parallel-burn operation, separate engines are used, rather than

dual-fuel engines, and all engines are ignited at lift-off. The optimization procedure of

this report is not applicable to the parallel-burn mode of operation; therefore, a para-
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metric optimization was used in conjunction with the closed-form solution. The para-

metric optimization consisted of selecting several values for Wign,2/Wlo (where the

subscript 2 implies the phase after the hydrocarbon engines are shut down) and plot-
ting the resulting values of WG/Win as a function of Av. The results of this optimi-
zation showed that the optimum phasing required a value of approximately 0.6 for

Wign,2/Wlo. The curve for parallel burn with Wign,2/Wlo = 0.6 is compared with the
dual-fuel-engine curve in figure 6. The figure shows that there is little difference
between the two modes of operation. For example, at Av = 8992 m/sec (29 500 ft/sec),
the value of WG/Win was 0.3305 for the vehicle with dual-fuel engines and 0.3310 for
the vehicle with parallel burn. The closeness of these values of WG/Win indicates
that dual-fuel rocket vehicles with parallel-burn propulsion systems should be consid-
ered in more depth.

SUMMARY OF RESULTS AND CONCLUSIONS

The ideal velocity increment (total performance) of a single-stage vehicle with
multiphase propulsion was analyzed with a general cost function. Linearized varia-
tions of the injected weight with the fuel loading of each phase were assumed. As a
consequence, a closed-form solution for the cost and for the performance as a function
of any given fuel loading was obtained.

The fuel loading of each phase was then optimized, and the result was a set of
simultaneous, nonlinear, algebraic equations. An implicit solution method was outlined.
When either gross weight or inert weight was minimized, the solution was found explic-
itly. The derivation results were written in some detail for the vehicle limited to two
phases while the generality of the cost function was maintained. The two-phase vehicle
results were programed and applied to the dual-fuel rocket vehicle.

The results of the analysis suggest the following specific conclusions:

1. When multiphase vehicles are designed for minimum gross lift-off weight, the
ideal velocity increment of all but the first phase is invariant with total ideal velocity
increment.

2. When multiphase vehicles are designed for minimum inert weight, the ideal
velocity increment of all but the last phase is invariant with total ideal velocity
increment.

The results of the application to dual-fuel rocket vehicles and of the parallel-burn
analysis are summarized as follows:

1. Vehicles with dual-fuel rocket propulsion can have lower inert weight than sim-
ilar vehicles with single-fuel propulsion at moderate and high design velocity increments.
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2. The requirement for the second set of engines significantly penalizes the series-
burn dual-fuel vehicle if a dual-fuel engine is not used.

3. The parallel-burn dual-fuel vehicle appears attractive and does not need a dual-
fuel engine.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., October 7, 1974.
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TABLE I.- COEFFICIENT INPUTSa

Propulsion system E T Is, sec

Single fuel:

RJ-5 ........................ 0.0225 0.0224 348

Hydrogen ..................... 0.0326 0.0419 465

Dual fuel:

RJ-5 ........................ 0.0225 0.0224 341

Hydrogen, dual-fuel engine/separate engine . . 0.0061/0.0326 0.0397 462

Parallel-burn phase ... . . . . ............ b0 . 0 2 6 4 0.0290 387

aThe following coefficients, which did not vary with propulsion system, were

also used in this analysis:

f = 0.328

Minimum inert weight:

in= I; All other cost coefficients = 0

Minimum fuel cost:

CF,1 = 1.0; CF,2 = 1.7; All other cost coefficients = 0

bNo additional engine weight is added for hydrogen-alone burn.
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Figure 2.- Comparison of single-fuel and dual-fuel propulsion systems in

single-stage vehicle.
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Figure 3.- Dual-fuel weight breakdown for minimum inert weight.
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Figure 4.- Comparison of dual-fuel engine and separate engines with series burn.
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Figure 5.- Dual-fuel weight breakdown for minimum fuel cost.
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Figure 6.- Comparison of propulsion systems with series burn and parallel burn.
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